

MEMORIAS

PRODUCCIÓN DE CULTIVOS ORGANICOS EN EL ECUADOR

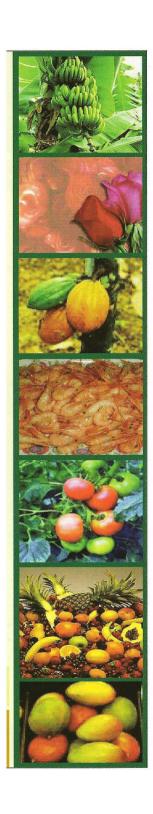
Edicion: Bernardo Navarrete

Campus Lodana, 21-22 de novembre del 2007

SEMINARIO
PRODUCCIÓN DE
CULTIVOS OR GANICOS
EN EL ECUADOR

Sta. Ana 21 de noviembre del 2007

La Sanidad Vegetal en la Agricultura Orgánica


Bernardo Navarrete Cedeño bernardonavarrete@hotmail.com

EL AMBIENTE REGULATORIO Y LA TOMA DE DECISIONES EN MANEJO DE PLAGAS

- Las plagas pueden limitar seriamente la producción y a la vez existen limitaciones para su combate.
- La certificación y las normas orgánicas son de cumplimiento obligatorio para vender productos con la etiqueta de "orgánico".
- La IFOAM trabaja para armonizar normas que son diferentes en cada país, pero todas se basan en CODEX ALIMENTARIUS NORMAS EUROPEAS NORMAS ORGANICAS AMERICANAS GUIA ISO 65
- Los productos permitidos son pocos, por lo que la sanidad vegeta le en agricultura orgánica se basa en la capacidad de autodefens a del sistema.

MÉTODOS DE CONTROL DE PLAGAS EN AGRICULTURA ORGÁNICA

Prevención y convivencia, claves en agricultura orgánica

La normatividad orgánica implementa mecanismos que obligan a los productores a prevenir los problemas de plagas.

- Plan de la finca
- Estrategias de manejo integrado de plagas

Las prácticas preventivas se refieren las estrategias agronómicas como fechas de siembra, tipo de cultivo, variedades resistentes, nutrición adecuada, etc. y algunas de manejo con sustancias naturales o sintéticas permitidas.

CONTROL CULTURAL

Implementación de prácticas mediante las cuales se producen cambios en el ambiente que lo hacen menos favorable para el desarrollo de éstos y que benefician a la vez directa o indirectamente a sus enemigos naturales

- Niveles de control no se comparan con el control químico
- Naturaleza preventiva, evitan o retardan un problema y hacen que el daño sea el menor posible
- Su filosofía es que hay solucionar los problemas atacando sus causas y no sus efectos.
- El control cultural necesita de más conocimiento, observación y habilidad por parte de los agricultores.

Hacer hábitat inaceptable para las plagas

Hacer que el cultivo no este disponible

Aumento de la diversidad

Cultivar plantas sanas

PREPARACION DEL SUELO

Cambios en las propiedades físico-químicas de los suelos que influyen en su ambiente y tienen un marcado impacto sobre las poblaciones de plagas

Directo Indirecto

Labranza convencional

Efecto contra babosas e insectos del suelo

Labranza conservacionista

Labranza mínima
15-30% del suelo queda con residuos del cultivo anterior

·Siembra directa - Cero labranza

Estructura del suelo más estable Mayor actividad biológica

Disminuye poblaciones de

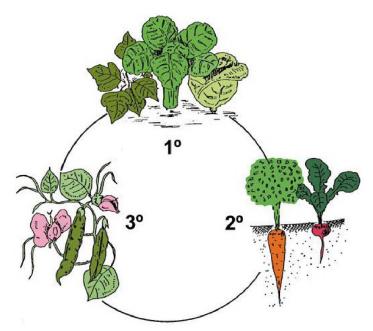
Spodoptera frugiperda Maíz Anticarsia gemmatalis Soya Pectinophora gossypiella Algodón Diatraea sacharalis Arroz

ROTACIÓN DE CULTIVOS

Sistema en el cual los cultivos se siembran en una asociación reiterativa y en una secuencia determinada sobre una misma superficie

Método más antiguo, se práctica desde hace más de tres mil años

Influye sobre la fertilidad del suelo y sus propiedades físico-químicas


Influye sobre las poblaciones de organismos nocivos y benéficos

El cambio estacional de la fuente de alimento produce cambios en la población de fitófagos e impide que se alcancen niveles poblacionales altos, pués se rompe el ciclo biológico de los organismos.

El control mediante la rotación es más efectivo si:

Hay diferencias botánicas entre las especies

La plaga tiene escasa capacidad de migración y rango de hospedantes limitado

ROTACIÓN DE CULTIVOS

CULTIVOS MULTIPLES

Monocultivo una de las causas principales de las explosiones de plagas debido a la simplificación de la biodiversidad.

Los cultivos múltiples son estrategias de diversificación

"Sistemas agrícolas diversificados en el tiempo y en el espacio en los cuales dos o más cultivos se siembran simultáneamente, lo suficientemente cercanos como para que se presenten interacciones entre ellos"

INTERCULTIVOS MEZCLADOS

INIAP - ESTACION EXPERIMENTAL PORTOVIEJO

INTERCULTIVOS EN SURCOS

INTERCULTIVOS EN FRANJAS

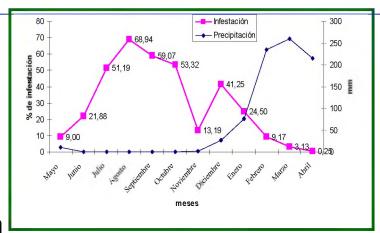
INTERCULTIVOS EN RELEVO

INIAP - ESTACION EXPERIMENTAL PORTOVIEJO

Hipótesis ecológicas

- Resistencia asociacional.- Interferencia de las respuestas olfatorias y visuales
- Concentración de recursos.- La población de plagas es influenciada por la dispersión de sus plantas hospedantes
- Enemigos naturales.-En los policultivos existen presas y hospedantes alternativos, más fuentes de pólen y nectar y sitios de refugio.

INIAP - ESTACION EXPERIMENTAL PORTOVIEJO


EFECTOS DE LOS CULTIVOS MÚLTIPLES

Efecto Cultivo Trampa
 Tomate - Fréjol

Efecto Cultivo Barrera
 Melón - Maíz

SIEMBRA

Fechas de siembra

Densidad de siembra

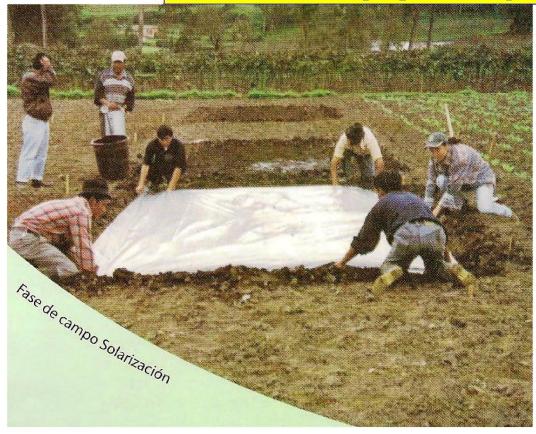
Densidades altas favorecen enfermedades y disminuyen ciertos insectos

Profundidad de siembra

Efecto variable:

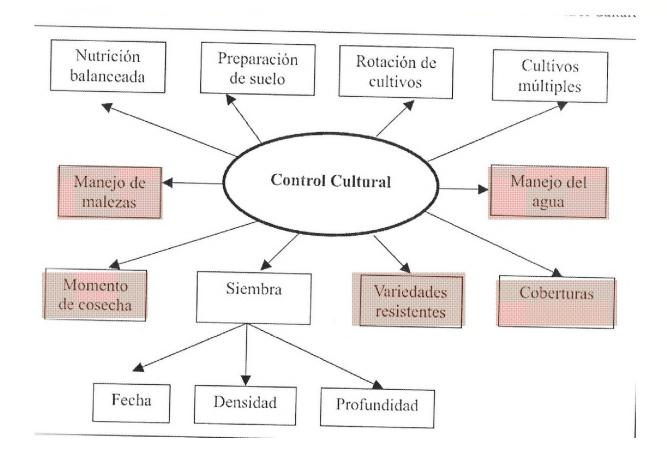
Poco profunda favorece el control de enfermedades

Más profunda se recomienda para el control de ciertos insectos del suelo


MANEJO DE LA NUTRICIÓN

Teoría de la Trofobiosis

- Plantas sanas resisten ataques
- Resistencia se relaciona con la síntesis de proteinas
- La síntesis de proteinas es alterada por los plaguicidas y por la nutrición desquilibrada
- Si no se sintetizan adecuadamente las proteinas, circulan por la planta azúcares solubles, compuestos nitrogenados y aminoacidos libres.
- Estas sustancias son una fuente de nutrientes para las plagas.



SOLARIZACION DEL SUELO

- "Cubrir el suelo húmedo y desnudo, con un material que permita el paso de los rayos solares"
- Alternativa al uso del Bromuro de Metilo
- Efectiva contra hongos y nemátodos.

OTRAS PRACTICAS CULTURALES

CONTROL NATURAL

- Todo organismo vivo presente en un agroecosistema está sometido a un control natural.
- Factores densoindependientes: Abióticos
- Factores densodependientes: Bióticos

CONTROL BIOLÓGICO

- OILB "la utilización de organismos vivos o de sus productos, para evitar o reducir las pérdidas o daños causados por los organismos nocivos"
- Parasitoides, depredadores y patógenos de insectos y ácaros, fitófagos de malezas y antagonistas de los patógenos.
- Manejo racional que de una u otra forma hace el hombre.
- Reestablecimiento del equilibrio biológico en el ecosistema

CONTROL BIOLÓGICO

Conservación e incremento de los enemigos naturales

Importación y colonización de enemigos naturales

Cría masiva y liberaciones periódicas

Conservación e incremento de los enemigos naturales

- Proveer de hospedantes/presas alternativos
- Proveer de alimentación a los adultos de parasitoides y depredadores
- Proveer refugios para la invernación, nidificación de los enemigos naturales.
- Mantener poblaciones aceptables de la plaga por per íodos extendidos.

Importación y colonización de enemigos naturales

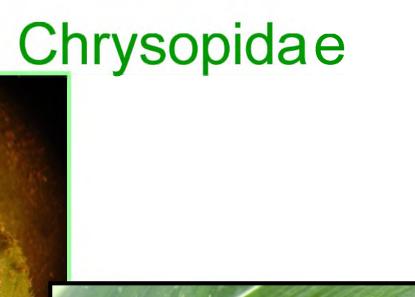
Control biológico clásico. Ej. Rodolia cardinalis

INIAP - ESTACION EXPERIMENTAL PORTOVIEJO

Cría masiva y liberaciones periódicas

- Consiste en obtener grandes cantidades de los enemigos naturales y liberarlos en los agroecosistemas.
- Inoculantes
- Suplementarias
- Inundantes

Depredadores


 Preda.- Es la acción en la cual un insecto o ácaro, en forma más o menos violenta captura a otro y lo inmoviliza, con el fin de alimentarse de el, objetivo que lo logra en un tiempo corto.

ORDEN	FAMILIA	HABITOS	
Coleoptera	Carabidae Cicindellidae Coccinellidae Staphylinidae	Larvas y adultos se alimentan de insectos del suelo. Larvas y adultos se alimentan de insectos del suelo. Larvas y adultos se alimentan de áfidos, ácaros, delfácidos, cicadélidos, escamas, etc. Larvas y adultos se alimentan de ácaros.	
Neuroptera	Chrysopidae		
Hemiptera	Reduviidae Pentatomidae Anthocoridae Miridae Nabidae	Generalista. Generalista. Generalista. Generalista. Generalista	
Hymenoptera	Formicidae Vespidae	Generalista. Huevos, larvas y pupas del suelo. Generalista.	
Diptera	Syrphidae Cecidomyiidae	Las larvas se alimentan de ácaros y áfidos. Las larvas se alimentan de ácaros y áfidos	
Acariformes	Cheyletidae Phytoseiidae	Se alimentan de ácaros. Se alimentan de ácaros.	

Coccinelidae

INIAP - ESTACION EXPERIMENTAL PORTOVIEJO

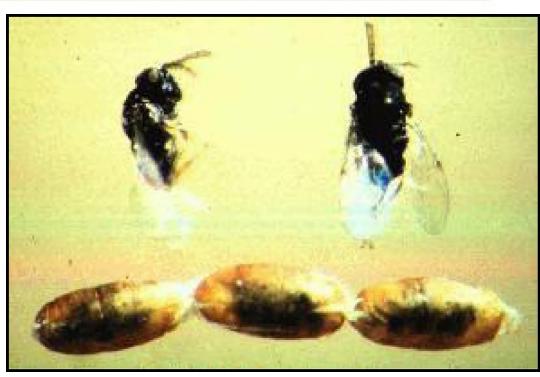
INIAP - ESTACION EXPERIMENTAL PORTOVIEJO

Vespidae

Syrphidae

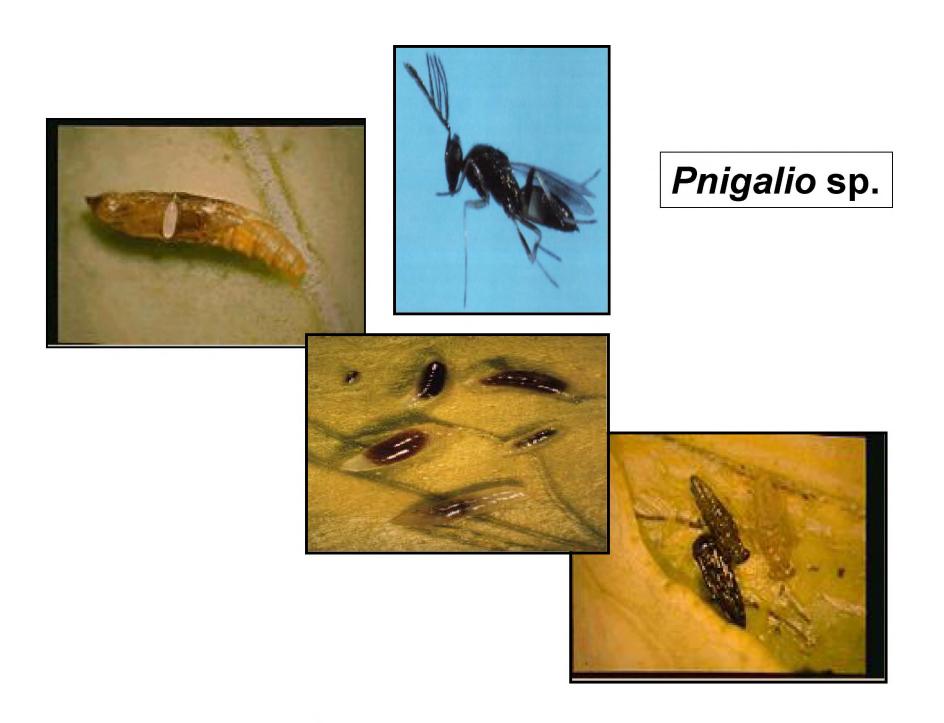
Ácaros depredadores

INIAP - ESTACION EXPERIMENTAL PORTOVIEJO


Parasitoides

 Parasitismo es la acción parasítica de un individuo se alimenta de otro lentamente, de forma tal que pueda completar su desarrollo antes de que éste muera

ORDEN	FAMILIA	EJEMPLOS
Hymenoptera	Ichneumonidae	Microgaster flaviventris
		Ichneumon sp
	Braconidae	Apanteles congregatus
		Cotesia spp.
	Aphidiidae	Diaretiella rapae
		Lysiphlebus testaceipes
	Aphelinidae	Aphelinus mali
		Encarsia spp.
		Aspidiotiphagus citrinus
		Eretmocerus serius
	Encyrtidae	Onencyrtus submetalicus
	Pteromalidae	Pteromalus puparum
		Scutellista cyanea
	Scelionidae	Telenomus spp
	Trichogrammatidae	Trichogramma spp
	Eulophidae	Euplectrus sp
		Tetrastichus sp
	Mymaridae	Anagrus sp
	Chalcididae	Brachymeria comitator
Diptera	Tachinidae	Chatogena scutelaris
		Paratheresia claripalpis
		Winthemia sp
	Sarcophagidae	Sarcodexia innota
	• • • • • • • • • • • • • • • • • • • •	Sarcophaga sp


Enemigos naturales del minador

Ageniaspis citricola

INIAP - ESTACION EXPERIMENTAL PORTOVIEJO

Horismenus

sp.

Elasmus sp.

Cirrospilus sp.

Zagrammosoma sp.

Galeopsomyia sp.

Parasitoides de mosca blanca

Patógenos de insectos

- Enfermedades bacteri anas
- Enfermedades fungosas
- Virus entomopatógenos
- Nemátodos entomopatógenos

2 2:35 PI

Enfermedades Bacterianas

ACTERIAS ESPORULANTES	BACTERIAS NO ESPORULANTES	
amilia Bacilliaceae	Familia Enterobacteriaceae	
Bacillus cereus	Serratia marcescens	
Bacillus larvae	*Xenorhabdus nematophilus	
Bacillus alvei	*Photorhabdus luminescens	
*Bacillus popilliae	Familia Pseudomonadaceae	
*Bacillus lentimorbus	Pseudomonas aeruginosa	
*Bacillus thuringiensis	Pseudomonas spp	
*Bacillus sphaericus	Familia Streptococcaceae	
Clostridium brevifasciens	Streptococcus pluton	
Clostridium malocosomae	Streptococcus faecalis	

Larva de Scarabaeidae infectada por *Bacillus popilliae* (derecha), comparada con una sana (izquierda). Observe la apariencia lechosa de la hemolinfa (flecha).

Enfermedades Fungosas

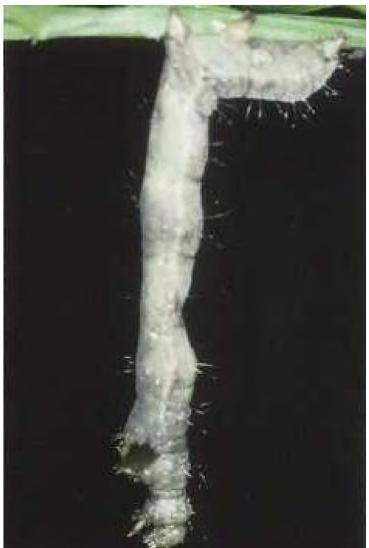
			Erynia Conidiobolus
Ascomycotina	Hemiascomycetes	Endomycetales	Neozygites Metchnikowia
	Pyrenomycetes	Sphaeriales	Cordyceps Nectria Hypocrella
	Loculoascomycetes	Myriangiales	Myriangium
Deuteromycotina	Deuteromycetes	Sphaeropsidales Moniliales	Aschersonia Beauveria Metarhizium Nomuraea Paecilomyces Verticillium Hirsutella
Basidiomycotina	Phragmobasidiomycetes	Septobasidiales	Septobasidium

Diferentes momentos en el desarrollo de *Beauveria bassiana* sobre un adulto de crisomélido.

Metarhizium anisopliae: El hongo completamente esporulado sobre una larva de curculiónido.

Verticillium lecanii sobre forma juvenil y adulto de mosca blanca.

Enfermedades Virales


Familias de virus que contienen DNA (Francki et al 1991)

Familia	Tipo de Cadena	Forma Particula	Cuerpo de Inclusión	Envoltura
Baculoviridae A. VPN	cd	Baciliforme	+	wiệ o
B. VG	cd	Baciliforme	+	+
C. BNO	cd	Baciliforme	**	+
Poxviridae	cd	Ovoide o Tabique	+	+
Parvoviridae	cs	Isométrica	**	-
Iridoviridae	cd	Icosaédrica	-	-
Polydnaviridae	cd	Ovoide	-	+
Ascoviridae	cd	Alantoide o baciliforme	+	+

Familias de virus que contienen RNA (Francki et al 1991)

Familia	Tipo de Cadena	Forma particula	Cuerpo de inclusión	Envoltura
Reoviridae	cd	Icosaédrica con proyecciones	+	-
Nodaviridae	cs	Icosaédrica	-	-
Picornaviridae	cs	Esférica	•	
Tetraviridae	cs	Icosaédrica	-	-
Birnaviridae	cd	Icosaédrica	-	-
Rhabdoviridae	cs	Esférica con pepiómeros	+	-
Flaviridae	cs	11	+	+
Togaviridae	cs	II .	+	
Bunyaviridae	cs	Esférica u oval	+	-

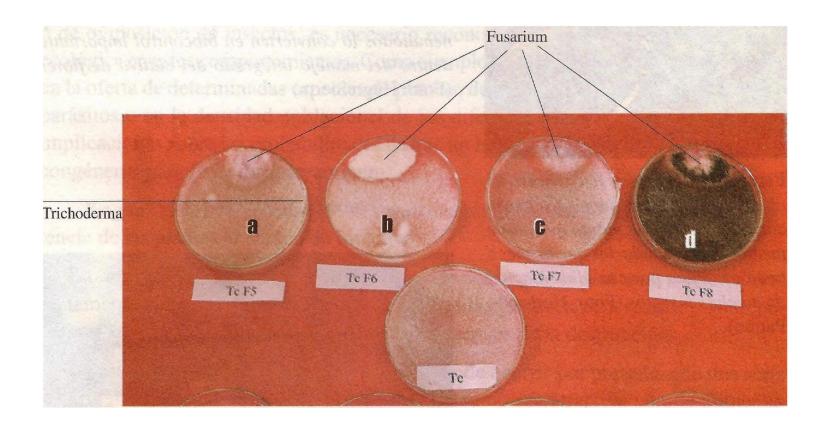
Virus de la Poliedrosis Nuclear (VPN) de *Thysanoplusia sp.* Izquierda: Larva viva en un estado avanzado de la infección. Derecha: Larva muerta colgando por sus pseudópodos.

Nemátodos entomopatógenos

PHYLLUM: NEMATA (Syn. Nematoda)

CLASE	ORDEN	FAMILIA	ESPECIE
Adenophorea (Aphasmida)	Stichosomida	Tetradonematidae Mermithidae	Tetradonema plicans Romanomermis culicivorax
Secernentea Rhabditida (Phasmidia)	Rhabditida	Rhabditidae	Rhabditis insectivora Steinernema carpocapsae
		Steinernematidae Heterorhabditidae	Heterorhabditis bacteriophora
	21 E/I	Oxyuridae	
	Diplogasterida	Diplogasteridae	Eudiplogaster aphodii
	Tylenchidae	Allantonematidae Sphaerulariidae	Deladenus siricidicola Sphaerularia bombi
	Aphelenchida	Aphelenchoididae Entaphelenchidae	Parasitaphelenchus sp Entaphelenchus sp

Larva de díptero con nematodos del género Steinernema en toda la cavidad del cuerpo.


Steinernema sp saliendo del cadáver de una pupa de Lepidoptera.

INIAP - ESTACION EXPERIMENTAL PORTOVIEJO

Microorganismos antagonistas de los patógenos vegetales

Producto	Antagonista	Patogeno	Productor
"P.g. suspension"	Phlebia gigantea	Heterobasidium annosum	Ecological Labs Ltd Inglaterra
Binat-T	Trichoderma spp	Chondrostereum purpureum, Endothia parasitica y Verticiilium malthousei	Bio Innovation Suecia
Polygandron	Pythium oligandrum	Pythium ultimun	Cia Vyzkummy
Dagger G	Pseudomonas fluorescens	P ultimun,Rhizoctonia solani -	Cia Ecogen, Inc. USA
Galltrol	Agrobacterium radiobacter	Agrobacterium tumefaciens	AgBio Chem, Inc USA
Norbac-84-C	Agrobacterium radiobactor	Agrobacterium tumefaciens	New Bio Products, Inc.USA
Trichodex	T. harzianum	Botrytis cineraa	Makhteshim Chem. Works Ltd., Israel
Mycostop	Streptomyces sp	Alternaria brassicola	Kemira Oy, Finlandia

Trichoderma vs Fusarium

CONTROL BOTÁNICO

- Aplicación de extractos de plantas con compuestos tóxicos para organismos nocivos.
- Desde el 400 AC.
- 2000 especies de plantas (170 familias).
- Principios activos son metabolitos secundarios. Alcaloides, terpenoides, flavonoides, cumarinas, quinonas, fenoles.

El Nim y su uso en el control de plagas

- Azadirachta indica
- Usado tradicional mente en India
- Estudio científico empezó en 1959
- Posee una amplia vari edad de químicos como triterpenos, diterpenos y compuestos no terpenoles, el de más actividad es la azadiracthina, otros como meliantriol, salanina, nimbidina y nimbin

Mecanismos de acción del nim

- Repelencia
- Antioviposición
- Conducta de alimentación
- Efecto en el crecimiento y metamorfosis

Recomendaciones para el uso del nim contra varias plagas de cultivos del litoral ecuatoriano

Cultivo	Plaga	Uso	Dosis
Maíz	Gusano Cogollero(Spodoptera	Semilla molida + arena o	Cebo: relación 1:3 ó 1: 2
	frugiperda)	aserrín	50g/L agua
	Gusano de la mazorca	Ext. acuoso de semilla	100g/L agua
	(Heliothis sp.)	Extracto acuoso de hoja	
Tomate	Cogollero (S. sunia)	Ext. acuoso de semilla	30-60 g/L agua
	Minador (<i>Tuta absoluta</i>)	Aceite formulado	5 mL/L agua
	Mosca blanca (Bemisia spp.)		
	Negrita (<i>Prodiplosis longifila</i>)		
Melon	Mosca blanca (<i>Bemisia</i> sp.)	Aceite formulado	5- 10 mL/L agua
Maní	Cogollero (Stegasta bosquela)	Ext. acuoso de semilla	50 g/L agua
Soya	Defoliador (Anticarsia gemmatalis)	Ext. acuoso de semilla	50 g/L agua
Arroz	Cogollero	Ext. acuoso de semilla	60 g/ Lagua
	(Spodoptera sp.; Mocis sp.)		
Caupí	Mosca blanca (<i>Bemisia</i> sp.)	Ext. acuoso de semilla	40 g/L agua
Cítricos	Minador (<i>Phyllocnistis citrella</i>)	Aceite formulado	5 - 10 mL/L agua
	Mosca blanca (Aleurotrixus floccosus)		
Café	Broca (Hypothenemus hampei)	Aceite formulado	25 mL/L agua
Granos	Gorgojos	Aceite artesanal	5 mL/kg de granos
almacenados	(Callosobruchus maculatus		
	Sitophilus oryzae)		

INIAP - ESTACION EXPERIMENTAL PORTOVIEJO