The XLIX
Report of The

BEAN IMPROVEMENT COOPERATIVE

No. 49 March 2006

[ISSN 0084-7747]

Coordinating Committee

Jim Beaver
Jim Kelly (President)
Phil Miklas
Soon Jai Park
Howard F. Schwartz (Ex officio)
Bert Vandenberg

Antonio de Ron
Ken Kmieciak
Jim Myers
Ron Riley
Ron Shellenberger

Please address correspondence about BIC membership and BIC annual reports to:

Dr. James D. Kelly, BIC President
Department of Crop & Soil Sciences
Michigan State University
East Lansing, MI 48824
U. S. A.
Tele: 517-355-0271 extension 1181 // FAX: 517-353-3955
Email: kellyj@msu.edu

http://www.css.msu.edu/bic

Note: It will be assumed that interested individuals may freely cite (including author credit) any report or note in this BIC report, unless the author indicates to the contrary. As a professional courtesy, individuals citing BIC notes should notify the authors of his or her intentions. The BIC Coordinating Committee approved this statement on November 5, 1975.
PATHOGENIC VARIABILITY OF *UROMYCES APPENDICULATUS* IN BEAN PRODUCTION AREAS IN NORTHERN ECUADOR.

Betty Pauca2, Angel Murillo I.1, Esteban Falconi1, Eduardo Peralta I.1

1Programa Nacional de Leguminosas y Granos Andinos (PRONALEG-GA). INIAP. Casilla 340. Quito-Ecuador. legumin@pi.pro.ec. 2Departamento Nacional de Protección Vegetal. INIAP.

Introduction

Rust, caused by *Uromyces appendiculatus*, is one of the most important diseases of common bean that occurs in the major bean production areas of Ecuador. The northern region in Ecuador, involving Carchi, Imbabura, and Pichincha provinces, represents one of the most important regions of the country where bush bean are planted on 20,000 ha every year (III Censo Agropecuario, 2002). The disease is particularly serious as many local cultivars are highly susceptible and farmers have sequential plantings that favors the spread of the disease. The bean breeding program in Ecuador has focused on the development of rust resistance cultivars for this important production area, but in order to generate cultivars with durable resistance it is important to study the variability of rust races present in the area to know which genes could be effective throughout the region.

Materials and methods

Bean tissue samples infected with rust were collected in production areas during 2004. The samples were processed in the laboratory of the National Institute of Agricultural Research (INIAP) at Santa Catalina Research Station. Monosporic isolates obtained from single uredinia were increased in the susceptible cultivar `Red Small Garden` (RSG). Eleven isolates were inoculated on the 12 new standard bean rust differentials. The inoculum consisted of a suspension of 30,000 spores/ml. Primary leaves of bean seedlings from the differential set were uniformly inoculated with each isolate using a hand sprayer. The plants were placed in a mist chamber at 100% RH for 18 h. Evaluations were conducted twice using the scale described by Stavely (1984) after the signs of the disease appeared. Plants rated 1-3 were classified as an incompatible reaction and 4-6 as a compatible reaction. To name the races the binary system proposed in the 3rd International Rust Workshop (Steadman et al., 2002) was employed.

Results

Eight different physiological races were identified from the 11 isolates evaluated. The eight races identified were 0:20, 0:24, 2:24, 0:28, 2:28, 0:29, 0:30, 0:61 (Table 1). The isolates were highly virulent on genotypes with Andean origin. The race 0:61 was the most virulent race in this group infecting five of 12 differentials. The five differentials belong to the Andean gene pool. The races 2:24 and 2:28 were able to infect not only Andean differential genotypes but cultivar `Aurora` from the Mesoamerican gene pool. Race 0:30 was the only race able to infect cultivar Redlands Pioneer from the Andean gene pool. Cultivar ‘Golden Gate Wax’ was susceptible to all isolates. PC-50 and Montcalm showed a compatible reaction with almost all isolates. The time to
express the symptoms was variable with different isolates so for that reason two evaluations were conducted.

Table 1. Races of *Uromyces appendiculatus* identified with the standard bean differential set for rust. Santa Catalina Research Station. 2005.

<table>
<thead>
<tr>
<th>Isolate code</th>
<th>Mesoamerican Gene Pool</th>
<th>Andean Gene Pool</th>
<th>Binary number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GN 1140</td>
<td>Aurora</td>
<td>Mex 309</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1. - = Incompatible reaction, + = Compatible reaction

Conclusions

Large variability was observed among the isolates evaluated. The small sample size showed that more depth studies on the pathogenic variability must be conducted since eight races out of 11 isolates were identified. The susceptibility displayed by the majority of Andean genotypes in the differential set suggested that the breeding strategy must focus on the incorporation of Mesoamerican resistance genes in local cultivars. Only the differential cultivar 'Aurora' (*Ur-3* gene) among the Mesoamerican group of differential showed compatibility reaction with isolates

References

